《大模型專題:大模型的異構(gòu)計算和加速》由英特爾院士戴金權(quán)在AiCon人工智能開發(fā)與應(yīng)用大會上的演講內(nèi)容整理而成。報告介紹了大語言模型的異構(gòu)計算和加速相關(guān)技術(shù)。先闡述大語言模型基于Transformer解碼器架構(gòu)的自回歸模型原理。接著分析大模型推理和訓(xùn)練面臨的瓶頸,包括內(nèi)存帶寬、計算、顯存大小和分布式計算等方面。
報告重點介紹了大模型的異構(gòu)計算和加速方法。包括XPU異構(gòu)計算,涉及CPU、GPU、NPU等硬件加速;低比特計算,如模型量化/壓縮、數(shù)據(jù)類型選擇、低比特算子應(yīng)用以及對顯存使用量和訓(xùn)練微調(diào)的影響,并對比了不同量化方式下多個模型的精度;還介紹了推理算法優(yōu)化,涵蓋Self - speculative decoding、KV Cache compression等多種方式。
此外,報告還介紹了IPEX - LLM開源大模型XPU加速框架及其應(yīng)用場景,如在Intel Core Ultra AI PC、Intel Arc A770 GPU等不同硬件上的加速體驗,包括Office助手、工業(yè)機(jī)器人代碼生成、AI座艙 - 汽車助理等多個應(yīng)用案例展示了英特爾XPU在大模型應(yīng)用創(chuàng)新方面的成果,并鼓勵關(guān)注和試用IPEX - LLM,在Intel XPU平臺開發(fā)大模型及其應(yīng)用。

![]() |
| 商用機(jī)器人 Disinfection Robot 展廳機(jī)器人 智能垃圾站 輪式機(jī)器人底盤 迎賓機(jī)器人 移動機(jī)器人底盤 講解機(jī)器人 紫外線消毒機(jī)器人 大屏機(jī)器人 霧化消毒機(jī)器人 服務(wù)機(jī)器人底盤 智能送餐機(jī)器人 霧化消毒機(jī) 機(jī)器人OEM代工廠 消毒機(jī)器人排名 智能配送機(jī)器人 圖書館機(jī)器人 導(dǎo)引機(jī)器人 移動消毒機(jī)器人 導(dǎo)診機(jī)器人 迎賓接待機(jī)器人 前臺機(jī)器人 導(dǎo)覽機(jī)器人 酒店送物機(jī)器人 云跡科技潤機(jī)器人 云跡酒店機(jī)器人 智能導(dǎo)診機(jī)器人 |